

[Introduction](#page-2-0) [A low-rank approximation of the FGLE](#page-8-0) [Convergence analysis](#page-30-0) [Numerical results](#page-45-0) [Summary](#page-54-0)

aaaaaaaaa

KORK ERKER ADAM ADA

000

A low-rank Lie-Trotter splitting approach for nonlinear fractional complex Ginzburg-Landau equations

Yong-Liang Zhao

joint work with A. Ostermann (UIBK) and Xian-Ming Gu (SWUFE)

School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P.R. China

Chengdu • Sichuan, November 14-15, 2020

KORK EXTERNE PROVIDE

[Introduction](#page-2-0)

- **•** [Background](#page-2-0)
- **•** [Motivation](#page-5-0)

2 [A low-rank approximation of the FGLE](#page-8-0)

- [The matrix differential equation](#page-8-0)
- [The full-rank Lie-Trotter splitting method](#page-13-0)
- [The low-rank approximation](#page-17-0)
- 3 [Convergence analysis](#page-30-0)
	- **•** [Preliminaries](#page-30-0)
	- **•** [Error estimate](#page-33-0)
- 4 [Numerical results](#page-45-0)

5 [Summary](#page-54-0)

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ ○ 결 ...

 2990

- **•** [Background](#page-2-0)
- **[Motivation](#page-5-0)**
- 2 [A low-rank approximation of the FGLE](#page-8-0) **•** [The matrix differential equation](#page-8-0) [The full-rank Lie-Trotter splitting method](#page-13-0) • [The low-rank approximation](#page-17-0)
- [Convergence analysis](#page-30-0)
	- **[Preliminaries](#page-30-0)**
	- **•** [Error estimate](#page-33-0)
- [Numerical results](#page-45-0)
- **[Summary](#page-54-0)**

Fractional Ginzburg-Landau equations (FGLEs) have been used to describe various physical phenomena such as neural networks modeling and fractal media^a.

^bO. Koch and C. Lubich. "Dynamical low-rank approximation". In: SIAM J. Matrix Anal. Appl. 29 (2007), pp. 434–454.

^aV.E. Tarasov and G.M. Zaslavsky. "Fractional Ginzburg-Landau equation for fractal media". In: Physica A 354 (2005), pp. 249–261.

Fractional Ginzburg-Landau equations (FGLEs) have been used to describe various physical phenomena such as neural networks modeling and fractal media^a.

Dynamical low-rank approximations of matrices are widely used for reducing models of large size. Such an approach has a broad variety of application areas, such as image compression, information retrieval and a blow-up problem of a reaction-diffusion equation^b.

^aV.E. Tarasov and G.M. Zaslavsky. "Fractional Ginzburg-Landau equation for fractal media". In: Physica A 354 (2005), pp. 249–261.

^bO. Koch and C. Lubich. "Dynamical low-rank approximation". In: SIAM J. Matrix Anal. Appl. 29 (2007), pp. 434–454.K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할) 게 이익(연

- **•** [Background](#page-2-0)
- **•** [Motivation](#page-5-0)
- 2 [A low-rank approximation of the FGLE](#page-8-0) **•** [The matrix differential equation](#page-8-0) [The full-rank Lie-Trotter splitting method](#page-13-0) • [The low-rank approximation](#page-17-0)
- [Convergence analysis](#page-30-0)
	- **[Preliminaries](#page-30-0)**
	- **•** [Error estimate](#page-33-0)
- [Numerical results](#page-45-0)
- **[Summary](#page-54-0)**

In this work, we mainly study a dynamical low-rank approximation for solving the following 2D complex FGLE:

$$
\begin{cases}\n\partial_t u - (\nu + i\eta)(\partial_x^{\alpha} + \partial_y^{\beta})u + (\kappa + i\xi)|u|^2u - \gamma u = 0, \\
(x, y, t) \in \Omega \times (0, T], \\
u(x, y, 0) = u_0(x, y), \quad (x, y) \in \overline{\Omega} = \Omega \cup \partial\Omega, \\
u(x, y, t) = 0, \quad (x, y) \in \partial\Omega,\n\end{cases}
$$
\n(1)

- $i =$ √ $-1, \nu > 0, \kappa > 0, \eta, \xi, \gamma$ are real numbers;
- $\Omega \ = \ (\mathrm{x}_L , \mathrm{x}_R) \times (\mathrm{y}_L , \mathrm{y}_R) \ \subset \ \mathbb{R}^2 , \ \ u_0 (\mathrm{x} , \mathrm{y})$ is a given complex function.

KORKARYKERKER POLO

where both $\partial^\alpha_\mathsf{x}$ $(1\,<\,\alpha\,<\,2)$ and $\partial^\beta_\mathsf{y}$ $(1\,<\,\beta\,<\,2)$ are the Riesz fractional derivatives^c:

$$
\partial_x^{\alpha} u(x,y,t) = -\frac{1}{2\cos(\alpha\pi/2)\Gamma(2-\alpha)}\frac{\partial^2}{\partial x^2}\int_{-\infty}^{\infty} |x-\zeta|^{1-\alpha}u(\zeta,y,t)d\zeta,
$$

$$
\partial_y^{\beta} u(x,y,t) = -\frac{1}{2\cos(\beta\pi/2)\Gamma(2-\beta)}\frac{\partial^2}{\partial y^2}\int_{-\infty}^{\infty} |y-\zeta|^{1-\beta} u(x,\zeta,t)d\zeta.
$$

^cR. Gorenflo and F. Mainardi. "Random walk models for space-fractional diffusion processes". In: Fract. Calc. Appl. Anal. 1 (1998), pp. 1[67–](#page-6-0)1[91](#page-8-0)[.](#page-6-0) (@ ১ ব ছ ১ ব ছ ১ ছ - ৩৭৫

KORK EXTERNE PROVIDE

[Introduction](#page-2-0)

- **•** [Background](#page-2-0)
- **[Motivation](#page-5-0)**

2 [A low-rank approximation of the FGLE](#page-8-0)

• [The matrix differential equation](#page-8-0)

- [The full-rank Lie-Trotter splitting method](#page-13-0)
- [The low-rank approximation](#page-17-0)

[Convergence analysis](#page-30-0)

- **[Preliminaries](#page-30-0)**
- **•** [Error estimate](#page-33-0)

[Numerical results](#page-45-0)

[Summary](#page-54-0)

The second-order fractional centered difference method^d is used for space discretization, i.e,

$$
\partial_x^{\alpha} u(x_i, y_j, t) = -h_x^{-\alpha} \sum_{k=-N_x+i}^{i} g_k^{\alpha} u_{i-k,j}(t) + \mathcal{O}(h_x^2)
$$

= $\delta_x^{\alpha} u_{ij}(t) + \mathcal{O}(h_x^2)$

$$
\partial_y^{\beta} u(x_i, y_j, t) = -h_y^{-\beta} \sum_{k=-N_y+j}^{j} g_k^{\beta} u_{i,j-k}(t) + \mathcal{O}(h_y^2)
$$

= $\delta_y^{\beta} u_{ij}(t) + \mathcal{O}(h_y^2)$

 \rm{d} C. Celik and M. Duman. "Crank–Nicolson method for the fractional diffusion equation with the Riesz fractional derivative". In: J. Comput. Phys. 231 (2012), pp. 1743–1750.K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

The semi-discrete scheme

$$
g_k^{\mu} = \frac{(-1)^k \Gamma(1+\mu)}{\Gamma(\mu/2 - k + 1) \Gamma(\mu/2 + k + 1)} \quad (\mu = \alpha, \ \beta, \ k \in \mathbb{Z})
$$

$$
h_x = \frac{x_R - x_L}{N_x}, \quad h_y = \frac{y_R - y_L}{N_y}
$$

Kロトメ部トメミトメミト ミニのRC

The semi-discrete scheme

$$
\mathsf{g}_{k}^{\mu} = \frac{(-1)^{k} \Gamma(1+\mu)}{\Gamma(\mu/2 - k + 1) \Gamma(\mu/2 + k + 1)} \quad (\mu = \alpha, \ \beta, \ k \in \mathbb{Z})
$$

$$
h_x = \frac{x_R - x_L}{N_x}, \quad h_y = \frac{y_R - y_L}{N_y}
$$

The semi-discrete scheme is given as

$$
\frac{du_{ij}(t)}{dt}=(\nu+i\eta)\left(\delta_x^{\alpha}+\delta_y^{\beta}\right)u_{ij}(t)-(\kappa+i\xi)|u_{ij}(t)|^2 u_{ij}(t)+\gamma u_{ij}(t),
$$

Kロトメ部トメミトメミト ミニのRC

where $u_{ij}(t) \approx u(x_i, y_j, t)$.

The matrix differential equation corresponding to the above spatial semi-discretized form is give by

$$
\begin{cases}\n\dot{U}(t) = A_x U(t) + U(t)A_y - (\kappa + i\xi) |U(t)|^2 U(t) + \\
\gamma U(t),\n\end{cases}
$$
\n(2)

where

$$
U(t) = [u_{ij}(t)]_{\substack{1 \le i \le N_{\chi}-1 \\ 1 \le j \le N_{\chi}-1}} \, , \, U^0 = [u_0(x_i, y_j)]_{\substack{1 \le i \le N_{\chi}-1 \\ 1 \le j \le N_{\chi}-1}} \, ,
$$

$$
U(t) = \left[\frac{du_{ij}(t)}{dt}\right]_{\substack{1 \le i \le N_{\chi}-1 \\ 1 \le j \le N_{\chi}-1}} \, ,
$$

 A_x and A_y are two symmetric Toeplitz matrices with first columns: $-\frac{\nu + i\eta}{\sqrt{2}}$ h_{x}^{α} $\begin{bmatrix} g_0^{\alpha}, g_1^{\alpha}, \cdots, g_{N_{x-2}}^{\alpha} \end{bmatrix}^T$ and $-\frac{\nu + i\eta}{\mu^{\beta}}$ h_y^{β} h_y^{β} h_y^{β} $\int_{\mathcal{B}_0}$ $\overset{\beta}{_{0}},\overset{\beta}{_{0}}$ $\frac{\beta}{1}, \cdots, \frac{\beta}{N}$ $\begin{bmatrix} \beta & \ N_y-2 \end{bmatrix}^T$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할) 게 이익(연

[Introduction](#page-2-0)

- **•** [Background](#page-2-0)
- **[Motivation](#page-5-0)**

2 [A low-rank approximation of the FGLE](#page-8-0)

• [The matrix differential equation](#page-8-0)

• [The full-rank Lie-Trotter splitting method](#page-13-0)

- [The low-rank approximation](#page-17-0)
- [Convergence analysis](#page-30-0)
	- **[Preliminaries](#page-30-0)**
	- **•** [Error estimate](#page-33-0)

[Numerical results](#page-45-0)

[Summary](#page-54-0)

[Introduction](#page-2-0) [A low-rank approximation of the FGLE](#page-8-0) [Convergence analysis](#page-30-0) [Numerical results](#page-45-0) [Summary](#page-54-0) [The full-rank Lie-Trotter splitting method](#page-13-0)

The full-rank Lie-Trotter splitting method

Eq. [\(2\)](#page-12-0) is split into the following two subproblems:

$$
\dot{U}_1(t) = \overbrace{A_x U_1(t) + U_1(t) A_y}^{\text{Stiff linear part}}, \quad U_1(t_0) = U_1^0,
$$
 (3)

KORKARYKERKER POLO

and

$$
\begin{cases}\n\dot{U}_2(t) = G(U_2(t)) \triangleq \underbrace{-(\kappa + i\xi) |U_2(t)|^2 U_2(t) + \gamma U_2(t)}_{\text{Nonstiff (nonlinear) part}}, \\
U_2(t_0) = U_2^0.\n\end{cases}
$$
\n(4)

00000

[Introduction](#page-2-0) [A low-rank approximation of the FGLE](#page-8-0) [Convergence analysis](#page-30-0) [Numerical results](#page-45-0) [Summary](#page-54-0)

000000000

KORKARYKERKER POLO

[The full-rank Lie-Trotter splitting method](#page-13-0)

The full-rank Lie-Trotter splitting method

The full-rank Lie-Trotter splitting scheme with time step size $\tau = \frac{T}{M}$ M is given by

$$
\mathcal{L}_{\tau} = \Phi_{\tau}^{L} \circ \Phi_{\tau}^{G}.
$$

Here, Φ^L_τ and Φ^G_τ denote the solutions of Eqs. [\(3\)](#page-14-0) and [\(4\)](#page-14-1), respectively.

00000

[Introduction](#page-2-0) [A low-rank approximation of the FGLE](#page-8-0) [Convergence analysis](#page-30-0) [Numerical results](#page-45-0) [Summary](#page-54-0)

000000000

KORKAR KERKER SAGA

 000

[The full-rank Lie-Trotter splitting method](#page-13-0)

The full-rank Lie-Trotter splitting method

The full-rank Lie-Trotter splitting scheme with time step size $\tau = \frac{T}{M}$ M is given by

$$
\mathcal{L}_{\tau} = \Phi_{\tau}^{L} \circ \Phi_{\tau}^{G}.
$$

Here, Φ^L_τ and Φ^G_τ denote the solutions of Eqs. [\(3\)](#page-14-0) and [\(4\)](#page-14-1), respectively.

Starting with $U_2^0\ =\ U^0$, the numerical solution $\ U^1$ of Eq. (1) at $t = t_1$ is thus given by

$$
U^1 = \mathcal{L}_{\tau}(U^0) = \Phi_{\tau}^L \circ \Phi_{\tau}^G(U^0).
$$

Subsequently, the numerical solution of Eq. [\(1\)](#page-6-1) at t_k is

$$
U^k = \mathcal{L}^k_\tau(U^0).
$$

KORK EXTERNE PROVIDE

[Introduction](#page-2-0)

- **•** [Background](#page-2-0)
- **[Motivation](#page-5-0)**

2 [A low-rank approximation of the FGLE](#page-8-0)

- **•** [The matrix differential equation](#page-8-0)
- [The full-rank Lie-Trotter splitting method](#page-13-0)
- [The low-rank approximation](#page-17-0)

[Convergence analysis](#page-30-0)

- **[Preliminaries](#page-30-0)**
- **•** [Error estimate](#page-33-0)

[Numerical results](#page-45-0)

[Summary](#page-54-0)

[Introduction](#page-2-0) [A low-rank approximation of the FGLE](#page-8-0) [Convergence analysis](#page-30-0) [Numerical results](#page-45-0) [Summary](#page-54-0)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[The low-rank approximation](#page-17-0)

The low-rank approximation

We seek after low-rank approximations

$$
X_1(t), X_2(t) \in \mathcal{M}_r = \left\{ X(t) \in \mathbb{C}^{(N_x-1) \times (N_y-1)} \mid \mathrm{rank}(X(t)) = r \right\}
$$

to $U_1(t)$ and $U_2(t)$, respectively.

[Introduction](#page-2-0) [A low-rank approximation of the FGLE](#page-8-0) [Convergence analysis](#page-30-0) [Numerical results](#page-45-0) [Summary](#page-54-0)

000000000

 000

[The low-rank approximation](#page-17-0)

The low-rank solution of Eq. (3)

It can be observed that [\(3\)](#page-14-0) is rank preserving^e. That is, for any $X\in\mathcal{M}_r$, $\mathcal{A}_\mathsf{x} X + X\mathcal{A}_\mathsf{y} \in \mathcal{T}_\mathsf{X}\mathcal{M}_r$, where $\mathcal{T}_\mathsf{X}\mathcal{M}_r$ is the tangent space of \mathcal{M}_r at a rank-r matrix X.

^eU. Helmke and J. B. Moore. Optimization and Dynamical Systems. London: Springer-Verlag, 1994, Lemma 1.22.K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q 00000

[Introduction](#page-2-0) [A low-rank approximation of the FGLE](#page-8-0) [Convergence analysis](#page-30-0) [Numerical results](#page-45-0) [Summary](#page-54-0)

000000000

000

[The low-rank approximation](#page-17-0)

The low-rank solution of Eq. (3)

It can be observed that [\(3\)](#page-14-0) is rank preserving^e. That is, for any $X\in\mathcal{M}_r$, $\mathcal{A}_\mathsf{x} X + X\mathcal{A}_\mathsf{y} \in \mathcal{T}_\mathsf{X}\mathcal{M}_r$, where $\mathcal{T}_\mathsf{X}\mathcal{M}_r$ is the tangent space of M_r at a rank-r matrix X. Thus, for a given rank-r initial value X_1^0 , the solution of

$$
\dot{X}_1(t) = A_x X_1(t) + X_1(t) A_y, \quad X_1(t_0) = X_1^0
$$

remains rank- r for all t .

How to solve this at $t = t_1$?

^eU. Helmke and J. B. Moore. Optimization and Dynamical Systems. London: Springer-Verlag, 1994, Lemma 1.22.KO KA (FRA 1988) DE XON 00000

[Introduction](#page-2-0) [A low-rank approximation of the FGLE](#page-8-0) [Convergence analysis](#page-30-0) [Numerical results](#page-45-0) [Summary](#page-54-0)

000000000

000

[The low-rank approximation](#page-17-0)

The low-rank solution of Eq. (3)

It can be observed that [\(3\)](#page-14-0) is rank preserving^e. That is, for any $X\in\mathcal{M}_r$, $\mathcal{A}_\mathsf{x} X + X\mathcal{A}_\mathsf{y} \in \mathcal{T}_\mathsf{X}\mathcal{M}_r$, where $\mathcal{T}_\mathsf{X}\mathcal{M}_r$ is the tangent space of M_r at a rank-r matrix X. Thus, for a given rank-r initial value X_1^0 , the solution of

$$
\dot{X}_1(t) = A_x X_1(t) + X_1(t) A_y, \quad X_1(t_0) = X_1^0
$$

remains rank- r for all t .

How to solve this at $t = t_1$?

$$
X_1(t_1)=e^{\tau A_x}X_1^0e^{\tau A_y}.
$$

^eU. Helmke and J. B. Moore. Optimization and Dynamical Systems. London: Springer-Verlag, 1994, Lemma 1.22.KO KA (FRA 1988) DE XON

Thinking in terms of the low-rank manifold M and the orthogonal projection onto the tangent space $\mathcal{T}_{\mathbf{Y}(t)}\mathcal{M}$, we imagine condition (1.6) as

Figure 1.1: Orthogonal projection onto the tangent space of the low-rank manifold. The red dashed line represents the orthogonal projection, which results in \dot{Y} . Out of all $\delta Y \in$ $T_{\mathbf{V}}\mathcal{M}$, $\dot{\mathbf{Y}}$ is the tangent element that minimizes the distance between $F(t, \mathbf{Y})$ and the tangent space of M at the approximation matrix Y.

H. M. Walach,Time integration for the dynamical low-rank approximation of matrices and tensors (Doctoral dissertation), Eberhard Karls Universität Tübingen (2019), Page 17.K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @ 00000

[Introduction](#page-2-0) [A low-rank approximation of the FGLE](#page-8-0) [Convergence analysis](#page-30-0) [Numerical results](#page-45-0) [Summary](#page-54-0)

000000000

 000

[The low-rank approximation](#page-17-0)

The low-rank solution of Eq. (4)

The low-rank solution of subproblem [\(4\)](#page-14-1) is obtained by solving the following optimization problem^f

$$
\min_{X_2(t)\in\mathcal{M}_r}\left\|\dot{X}_2(t)-\dot{U}_2(t)\right\|,\quad \text{s.t. }\dot{X}_2(t)\in\mathcal{T}_{X_2(t)}\mathcal{M}_r,
$$

where $\mathcal{T}_{X_2(t)}\mathcal{M}_r$ is the tangent space of \mathcal{M}_r at the current approximation $X_2(t)$.

How to solve this optimization problem?

^fO. Koch and C. Lubich. "Dynamical low-rank approximation". In: SIAM J. Matrix Anal. Appl. 29 (2007), pp. 434–454.K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할) 게 이익(연 00000

[Introduction](#page-2-0) [A low-rank approximation of the FGLE](#page-8-0) [Convergence analysis](#page-30-0) [Numerical results](#page-45-0) [Summary](#page-54-0)

000000000

 000

[The low-rank approximation](#page-17-0)

The low-rank solution of Eq. (4)

The low-rank solution of subproblem [\(4\)](#page-14-1) is obtained by solving the following optimization problem^f

$$
\min_{X_2(t)\in\mathcal{M}_r}\left\|\dot{X}_2(t)-\dot{U}_2(t)\right\|,\quad \text{s.t. }\dot{X}_2(t)\in\mathcal{T}_{X_2(t)}\mathcal{M}_r,
$$

where $\mathcal{T}_{X_2(t)}\mathcal{M}_r$ is the tangent space of \mathcal{M}_r at the current approximation $X_2(t)$.

How to solve this optimization problem? C. Lubich, I. V. Oseledets, A projector-splitting integrator for dynamical low-rank approximation, BIT 54 (2014) 171-188.

^fO. Koch and C. Lubich. "Dynamical low-rank approximation". In: SIAM J. Matrix Anal. Appl. 29 (2007), pp. 434–454.K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할) 게 이익(연

[Introduction](#page-2-0) [A low-rank approximation of the FGLE](#page-8-0) [Convergence analysis](#page-30-0) [Numerical results](#page-45-0) [Summary](#page-54-0)

KORK ERKER ADAM ADA

[The low-rank approximation](#page-17-0)

Solve the optimization problem

$$
\min_{X_2(t)\in\mathcal{M}_r} \left\| \dot{X}_2(t) - \dot{U}_2(t) \right\|, \quad \text{s.t. } \dot{X}_2(t) \in \mathcal{T}_{X_2(t)}\mathcal{M}_r
$$

equivalent to

 $\dot{X}_2(t) = P(X_2(t))G(X_2(t)), \quad X_2(t_0) = X_2^0 \in \mathcal{M}_r,$

where $P(X_2(t))$ is the orthogonal projection onto $\mathcal{T}_{X_2(t)}\mathcal{M}_r.$

 00000

[Introduction](#page-2-0) [A low-rank approximation of the FGLE](#page-8-0) [Convergence analysis](#page-30-0) [Numerical results](#page-45-0) [Summary](#page-54-0)

000000000

 000

[The low-rank approximation](#page-17-0)

Solve the optimization problem

A rank-*r* matrix $X_2(t)\in \mathbb{C}^{(N_\mathsf{x}-1)\times (N_\mathsf{y}-1)}$ can be expressed as $X_2(t)=$ $S(t)\Sigma(t)V(t)^*,$ where $S(t)\in \mathbb{C}^{(N_{\sf x}-1)\times r}$ and $V(t)\in \mathbb{C}^{(N_{\sf y}-1)\times r}$ have orthonormal columns, $\Sigma(t) \in \mathbb{C}^{r \times r}$ is nonsingular and has the same singular values as $\mathcal{X}_2(t)$, and * means conjugate transpose^g.

This expression is similar to SVD, but $\Sigma(t)$ is not necessarily a diagonal matrix.

^gC. Lubich and I. V. Oseledets. "A projector-splitting integrator for dynamical $\,$ low-rank approximation". In: BIT 54 (2014), pp. 171–188র চার রাজ রাজ বাইন বাইন বাইন স্বর্

[Introduction](#page-2-0) [A low-rank approximation of the FGLE](#page-8-0) [Convergence analysis](#page-30-0) [Numerical results](#page-45-0) [Summary](#page-54-0)

[The low-rank approximation](#page-17-0)

The projector-splitting integrator

$$
P(X_2(t))G(X_2(t)) = S(t)S(t)^*G(X_2(t)) -\nS(t)S(t)^*G(X_2(t))V(t)V(t)^* +\nG(X_2(t))V(t)V(t)^* \n\triangleq P_1(X_2(t))G(X_2(t)) -\nP_1(X_2(t))G(X_2(t))P_2(X_2(t)) +\nG(X_2(t))P_2(X_2(t))
$$

 $P_1(X_2(t))$ and $P_2(X_2(t))$ are the orthogonal projections onto the spaces spanned by the range and the corange of $X_2(t)$, respectively.

 00000

[Introduction](#page-2-0) [A low-rank approximation of the FGLE](#page-8-0) [Convergence analysis](#page-30-0) [Numerical results](#page-45-0) [Summary](#page-54-0)

000000000

KORKARYKERKER POLO

[The low-rank approximation](#page-17-0)

The projector-splitting integrator

The low-rank solution of Eq. [\(4\)](#page-14-1) at t_1 can be obtained by solving the evolution equations:

$$
\dot{X}_2^1(t) = P_1(X_2(t))G(X_2(t)), \quad X_2^1(t_0) = X_2^0,
$$
\n
$$
\dot{X}_2^1(t) = -P_1(X_2(t))G(X_2(t))P_2(X_2(t)), \quad X_2^1(t_0) = X_2^1(t_1),
$$
\n
$$
\dot{X}_2^1(t) = G(X_2(t))P_2(X_2(t)), \quad X_2^1(t_0) = X_2^1(t_1).
$$

Then, $X_2^{III}(t_1)$ is the approximate solution of $X_2(t_1)$.

 00000

[Introduction](#page-2-0) [A low-rank approximation of the FGLE](#page-8-0) [Convergence analysis](#page-30-0) [Numerical results](#page-45-0) [Summary](#page-54-0)

aaaaaaaaa

KORKAR KERKER SAGA

000

[The low-rank approximation](#page-17-0)

The low-rank approximation of Eq. (1)

Let X^0 be a rank-r approximation of the initial value $U^0.$ We start with $X_2^0 = X^0$ and obtain the rank- r approximation X^1 of the solution of (1) at t_1 as

$$
X^1 = \mathcal{L}_{\tau,r}(X^0) = \Phi^L_\tau \circ \tilde{\Phi}^G_\tau(X^0). \tag{5}
$$

Here, $\tilde{\Phi}_{\tau}^{\mathcal{G}}$ denotes the low-rank solution of [\(4\)](#page-14-1). Consequently, the low-rank solution of (1) at t_k is $X^k = \mathcal{L}^k_{\tau,r}(X^0).$

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ ○ 결 ...

 $2Q$

[Introduction](#page-2-0)

- **•** [Background](#page-2-0)
- **[Motivation](#page-5-0)**

2 [A low-rank approximation of the FGLE](#page-8-0) **•** [The matrix differential equation](#page-8-0) [The full-rank Lie-Trotter splitting method](#page-13-0) • [The low-rank approximation](#page-17-0)

- 3 [Convergence analysis](#page-30-0)
	- **•** [Preliminaries](#page-30-0)
	- **•** [Error estimate](#page-33-0)
- [Numerical results](#page-45-0)

[Summary](#page-54-0)

Assumption 1

We assume that

(a) G is continuously differentiable in a neighborhood of the exact solution, and the solution of Eq. [\(1\)](#page-6-1) is bounded, i.e. $|u(x, y, t)| \leq \delta$, $(x, y, t) \in \Omega \times (0, T]$, for some $\delta > 0$;

(b) there exists $\varepsilon > 0$ such that

$$
G(X(t)) = \tilde{B}(X(t)) + R(X(t)) \quad \text{for} \ \ t_0 \leq t \leq T,
$$

where $\widetilde{B}(X(t)) \in \mathcal{T}_{X(t)}\mathcal{M}_r$ and $||R(X(t))||_F \leq \varepsilon$.

 (c) The exact solution of (1) is sufficiently smooth such that the fractional central difference method is second-order accurate.

Property 1

Preliminaries

(a) There exists $C_1 > 0$ such that A_x and A_y satisfy

$$
\left\|e^{tA_x}Ze^{tA_y}\right\|_F \leq \|Z\|_F, \ \left\|e^{tA_x}(A_xZ+ZA_y)e^{tA_y}\right\|_F \leq \frac{C_1}{t} \|Z\|_F
$$

for all $t > 0$ and $Z \in \mathbb{C}^{(N_x-1)\times(N_y-1)}$.

(b) Under Assumption $1(a)$, the function G is locally Lipschitz continuous and bounded in a neighborhood of the solution $U(t)$. That is to say, for \parallel $\left\| \hat{U} - U(t) \right\|_F \leq \tilde{\xi},$ $\tilde{U} - U(t) \Big\|_F \leq \tilde{\xi}$ and $\left\|\bar{U}-U(t)\right\|_F\leq \tilde{\xi}\,\,(\tilde{\xi}>0,\;t_0\leq t\leq \mathcal{T}),$ one obtains

$$
\left\|G(\hat{U})-G(\tilde{U})\right\|_{F}\leq L\left\|\hat{U}-\tilde{U}\right\|_{F},\quad\|G(\bar{U})\|_{F}\leq H,
$$

where the co[n](#page-31-0)st[a](#page-33-0)nts L an[d](#page-32-0) H depend on δ and ξ [.](#page-33-0)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할) 게 이익(연

[Introduction](#page-2-0)

- **•** [Background](#page-2-0)
- **[Motivation](#page-5-0)**

2 [A low-rank approximation of the FGLE](#page-8-0)

- **•** [The matrix differential equation](#page-8-0)
- [The full-rank Lie-Trotter splitting method](#page-13-0)
- [The low-rank approximation](#page-17-0)

3 [Convergence analysis](#page-30-0)

- **[Preliminaries](#page-30-0)**
- **•** [Error estimate](#page-33-0)

[Numerical results](#page-45-0)

[Summary](#page-54-0)

Let X^0 be a given rank-r approximation of the initial value U^0 satisfying $||X^0 - U^0||_F \leq \sigma$, for some $\sigma \geq 0$.

KO K K Ø K K E K K E K V K K K K K K K K K

The global error can be split in three terms:

1) The global error of the full-rank Lie-Trotter splitting, i.e.

$$
E_{\text{fs}}^k = \mathcal{U}(t_k) - \mathcal{L}_{\tau}^k(U^0).
$$

KORKARYKERKER POLO

Here, $\mathcal{U}(t_k) = [u(x_i, y_j, t_k)]_{1 \le i, j \le N-1}$.

The global error can be split in three terms:

1) The global error of the full-rank Lie-Trotter splitting, i.e.

$$
E_{\mathsf{fs}}^k = \mathcal{U}(t_k) - \mathcal{L}_{\tau}^k(\mathcal{U}^0).
$$

Here, $\mathcal{U}(t_k) = [u(x_i, y_j, t_k)]_{1 \le i, j \le N-1}$.

2) The difference between the full-rank initial value U^0 and its rank- r approximation X^0 , both propagated by the full-rank Lie-Trotter splitting, i.e.

$$
E_{\text{fl}}^k = \mathcal{L}_{\tau}^k(\mathbf{U}^0) - \mathcal{L}_{\tau}^k(\mathbf{X}^0).
$$

KORKARYKERKER POLO

The global error can be split in three terms:

1) The global error of the full-rank Lie-Trotter splitting, i.e.

$$
E_{\mathsf{fs}}^k = \mathcal{U}(t_k) - \mathcal{L}_{\tau}^k(\mathcal{U}^0).
$$

Here, $\mathcal{U}(t_k) = [u(x_i, y_j, t_k)]_{1 \le i, j \le N-1}$.

2) The difference between the full-rank initial value U^0 and its rank- r approximation X^0 , both propagated by the full-rank Lie-Trotter splitting, i.e.

$$
E_{\text{fl}}^k = \mathcal{L}_{\tau}^k(\mathbf{U}^0) - \mathcal{L}_{\tau}^k(\mathbf{X}^0).
$$

3) The difference between the full-rank Lie-Trotter splitting and the low-rank splitting applied to \mathcal{X}^0

$$
E_{lr}^k = \mathcal{L}_{\tau}^k(X^0) - \mathcal{L}_{\tau,r}^k(X^0).
$$

Under Assumption [1,](#page-31-1) for $1 \leq k \leq M$, the error bound

$$
||E_{fs}^k||_F \leq C_2[\tau(1+||\log \tau|) + h_x^2 + h_y^2]
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

holds. Here, the constant C_2 depends on C_1 , L and H.

Under Assumption [1,](#page-31-1) for $1 \leq k \leq M$, the error bound

$$
||E_{fs}^k||_F \leq C_2[\tau(1+||\log \tau|) + h_x^2 + h_y^2]
$$

holds. Here, the constant C_2 depends on C_1 , L and H.

 ${\sf Hints}$: $\|E^k_{\rm fs}\|_F = \| {\cal U}(t_k) - {\cal U}(t_k) + {\cal U}(t_k) - {\cal L}_\tau^k ({\cal U}^0) \|_F$ and Property [1](#page-32-1) is used.

KORKARRA ERKER SAGA

Under Assumption [1,](#page-31-1) E_{lr}^k is bounded on $t_0 \leq t_0 + k\tau \leq T$ as

$$
||E_{Ir}^k||_F\leq C_3\varepsilon+C_4\tau,
$$

KORKARYKERKER POLO

where the constants C_3 and C_4 depend on H, L and T.

Under Assumption [1,](#page-31-1) E_{lr}^k is bounded on $t_0 \leq t_0 + k\tau \leq T$ as

$$
||E_{lr}^k||_F\leq C_3\varepsilon+C_4\tau,
$$

where the constants C_3 and C_4 depend on H, L and T.

Hints: A. Ostermann, C. Piazzola, H. Walach, Convergence of a low-rank Lie-Trotter splitting for stiff matrix differential equations, SIAM J. Numer. Anal., 57 (2019) 1947-1966.

KORKARYKERKER POLO

Under Assumption [1,](#page-31-1) there exists $\tilde{\tau}$ such that for all $0 < \tau \leq \tilde{\tau}$, the error of $\mathcal{L}_{\tau,r}$ is bounded on $t_0 \leq t_0 + k\tau \leq \mathcal{T}$ by

$$
\left\| \mathcal{U}(t_k) - \mathcal{L}_{\tau,r}^k(X^0) \right\|_F \leq C_3 \varepsilon + C_5[\tau(1+|\log \tau|) + h_x^2 + h_y^2] + e^{LT} \sigma.
$$
\n(6)

Here C_3 and C_5 (containing C_2 and C_4) are independent of τ and k.

KOD KAR KED KED E YOUN

Under Assumption [1,](#page-31-1) there exists $\tilde{\tau}$ such that for all $0 < \tau \leq \tilde{\tau}$, the error of $\mathcal{L}_{\tau,r}$ is bounded on $t_0 \leq t_0 + k\tau \leq \mathcal{T}$ by

$$
\left\| \mathcal{U}(t_k) - \mathcal{L}_{\tau,r}^k(X^0) \right\|_F \leq C_3 \varepsilon + C_5[\tau(1+|\log \tau|) + h_x^2 + h_y^2] + e^{LT}\sigma.
$$
\n(6)

Here C_3 and C_5 (containing C_2 and C_4) are independent of τ and k.

KORKAR KERKER ST VOOR

Hints: $||\mathcal{U}(t_k) - \mathcal{L}_{\tau,\mathsf{r}}^k(X^0)||_F = ||E_{\mathsf{fs}}^k + E_{\mathsf{fl}}^k + E_{\mathsf{lr}}^k||_F, ||E_{\mathsf{fl}}^k||_F \leq e^{L\tau}\sigma.$

Under Assumption [1,](#page-31-1) there exists $\tilde{\tau}$ such that for all $0 < \tau \leq \tilde{\tau}$, the error of $\mathcal{L}_{\tau,r}$ is bounded on $t_0 \leq t_0 + k\tau \leq \mathcal{T}$ by

$$
\left\| \mathcal{U}(t_k) - \mathcal{L}_{\tau,r}^k(X^0) \right\|_F \leq C_3 \varepsilon + C_5[\tau(1+|\log \tau|) + h_x^2 + h_y^2] + e^{LT} \sigma.
$$
\n(6)

Here C_3 and C_5 (containing C_2 and C_4) are independent of τ and k.

$$
\text{Hints: } \|\mathcal{U}(t_k) - \mathcal{L}_{\tau,r}^k(X^0)\|_F = \|E_{fs}^k + E_{fl}^k + E_{lr}^k\|_F, \|E_{fl}^k\|_F \leq e^{LT}\sigma.
$$

The spatial error does not depend on r, but when r is small, the error is dominated by the term $C_3\varepsilon$.

KORKARYKERKER POLO

Example X Considering the equation [\(1\)](#page-6-1) with $\Omega = [-10, 10] \times$ $[-10, 10]$ with $u_0(x, y) = 2 \text{ sech}(x) \text{ sech}(y) e^{3i(x+y)}$, $\nu = \eta = \kappa =$ $\xi = \gamma = 1$ and $T = 1$.

We fix $N_x = N_y = N$ and $h_x = h_y = h$. The reference solution $((N,M) = (512,10000))$ is computed by the LBDF2 scheme^h. Let

$$
\operatorname{relerr}(\tau, h) = \frac{\|X^M - \mathcal{U}(\tau)\|_F}{\|\mathcal{U}(\tau)\|_F}.
$$

^hQ. Zhang et al. "Linearized ADI schemes for two-dimensional space-fractional nonlinear Ginzburg–Landau equation". In: Comput. Math. Appl. 80 (2020), pp. 1201– 1220.**KORKARYKERKER POLO**

Table: Errors and observed temporal convergence orders for $N = 512$ for Example X.

Table: Errors and observed temporal convergence orders for $N = 512$ for Example X.

Table: Errors and observed spatial convergence orders for $M = 10000$ for Example X.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Table: Errors and observed spatial convergence orders for $M = 10000$ for Example X.

Figure: Results for Example X for $(\alpha, \beta) = (1.5, 1.5)$ and $N = M = 200$. Left: Numerical rank of the LBDF2 solution as a function of t. Right: First 60 singular values of the LBDF2 solution at $t = T$.

メロトメ 御 トメ 差 トメ 差 トッ 差 299

Figure: Comparison of the absolute values of the LBDF2 solution and our low-rank solution at $t = T$ for $(N, M) = (512, 200)$ and $(\alpha, \beta) = (1.2, 1.9)$ for Example X. Left: The LBDF2 solution. Right: The low-rank solution (rank $r = 5$).

KORKARYKERKER POLO

Figure: Comparison of the absolute values of the LBDF2 solution and our low-rank solution at $t = T$ for $(N, M) = (512, 200)$ and $(\alpha, \beta) = (1.5, 1.5)$ for Example X. Left: The LBDF2 solution. Right: The low-rank solution (rank $r = 5$).

Figure: Comparison of the absolute values of the LBDF2 solution and our low-rank solution at $t = T$ for $(N, M) = (512, 200)$ and $(\alpha, \beta) = (1.9, 1.2)$ for Example X. Left: The LBDF2 solution. Right: The low-rank solution (rank $r = 5$).

KORKARYKERKER POLO

Conclusions

- \triangleright A numerical integration method based on a dynamical low-rank approximation is proposed to solve 2D FGLEs.
- \triangleright We conduct an error analysis of the proposed procedure, which is independent of the stiffness and robust with respect to possibly small singular values in the approximation matrix.
- \triangleright Numerical results show that our method is robust and accurate.

KORKARYKERKER POLO

Work(s) in progress/ideas:

- \triangleright Extension of our method to other problems such as space fractional Schrödinger equations.
- \triangleright For solving higher-dimensional version of (1) , we suggest considering the dynamical tensor approximation $^{\sf i}.$
- \triangleright Design some fast implementations (e.g., a parallel version) of our method.

ⁱOt. Koch and C. Lubich. "Dynamical tensor approximation". In: SIAM J. Matrix Anal. Appl. 31 (2010), pp. 2360–2375.

- 1) Y.-L. Zhao, A. Ostermann, X.-M. Gu, A low-rank Lie-Trotter splitting approach for nonlinear fractional complex Ginzburg-Landau equations, J. Comput. Phys., 2020, 17 pages. (under review)
- 2) Y.-L. Zhao, M. Li, A. Ostermann, X.-M. Gu, An efficient secondorder energy stable BDF scheme for the space fractional Cahn-Hilliard equation, BIT, 2019, 26 pages. (under revise)
- 3) Y.-L. Zhao, X.-M. Gu, A. Ostermann, A parallel preconditioning technique for an all-at-once system from subdiffusion equations with variable time steps, J. Comput. Sci., 2019, 22 pages. (under revise)

KORKAR KERKER SAGA

Questions or comments?

Many thanks for the kind invitation and your attention!

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @